SUPPLEMENTAL MATERIAL

Gestational diabetes in mice induces hematopoietic memory

that impacts the long-term health of the offspring

Vinothini Govindarajah, Masahide Sakabe, Samantha Good, Michael Solomon, Ashok Arasu, Nong Chen, Xuan Zhang, H. Leighton Grimes, Ady Kendler, Mei Xi and Damien Reynaud

- Supplemental Figures 1-6
- Supplemental Tables 1-3
 - Table S1: available as Excel File, provides differential gene expression / gene set enrichment analyses associated with the bulk RNAseq experiment performed on placental CD45+ cells (Figure 5G).
 - Table S2: List of key resources.
 - Table S3: List of Antibodies/reagents used for flow cytometry analysis.

Supplemental Figure 1. Offspring born to diabetic pregnancy display minimal glucose control alterations. (A-B) Blood glucose levels of adult WT^{Akita} (A) and WT^{STZ} (B) offspring during oral glucose tolerance test [OGTT] (upper panel) and intra-peritoneal insulin tolerance test [IPTT] (lower panel) (A: n = 3-4/group; B: n = 4/group). Right graphs indicate difference in calculated area under the curve (AUC) compared to respective control. Graphs indicate mean \pm SD. Unpaired Student's t test ****, $P \le 0.0001$.

Supplemental Figure 2. GD is associated with aortic atherosclerosis severity in adult offspring. (A) Histological analysis of hematoxylin and eosin-stained aortic valves from $Apoe^{-/-}$ offspring born to diabetic pregnancy compared to control. 100x magnification (B) Acellular area identified in H&E stain lesions (n = 7-5/group). (C) Histological analysis of valves from $Apoe^{-/-}$ recipient mice transplanted with BM cells isolated from Ctrl or GD offspring. 100x magnification (D) Blood composition in $Apoe^{-/-}$ recipient mice transplanted with BM cells isolated from Ctrl or GD offspring. Left panel shows the percentage of myeloid (Mac1) and lymphoid (B220 and CD3) cells. Right panel shows the percentage of neutrophil (Ly6G⁺) and Monocytes (Ly6G⁻ Ly6C^{+/low}) in myeloid cells (n = 9-15/group). (E) Blood cells in aorta isolated from $Apoe^{-/-}$ recipient mice transplanted with BM cells isolated from Ctrl or GD offspring (n = 3/group). Graphs indicate mean \pm SD. Unpaired Student's t test (B) and two-way ANOVA with Sidak's post hoc test (D-E): *, P ≤ 0.01; ***, P ≤ 0.0005.

Supplemental Figure 3. Offspring born to diabetic pregnancy display altered steady-state hematopoiesis: (A) Representative FACS plot showing the phenotypic definition of BM HSPC compartments (B) BM cellularity and absolute number of BM myeloid/lymphoid cells in adult WT^{STZ} offspring (n = 7/group). (C-D) Absolute number of HSPC populations in the BM of adult Ctrl and WT^{STZ} offspring (n = 7/group). (E) Percentage of HSC distribution in cell cycle phases in adult Ctrl and WT^{STZ} offspring (n = 7-8/group). (F) Percentage of HSCs isolated from Ctrl and WT^{STZ} offspring that present FOXO3 nuclear localization at steady state (n = 4 with 50 individual cells analyzed for each). (G-H) Competitive hematopoietic reconstitution assay for HSCs isolated from Ctrl (n = 5) and WT^{STZ} (n = 5) offspring from 1 experiment: PB chimerism over time (G) and BM chimerism for HSPC compartments, 20 weeks after transplantation (H). Graphs indicate mean \pm SD. Two-way ANOVA with Sidak's post hoc test (B, C D, G and H) or with Tukey's post hoc test (E and F): *, P ≤ 0.05, **, P ≤ 0.01; ***, P ≤ 0.0005.

Supplemental Figure 4. Offspring born to diabetic pregnancy display altered in vivo and in vitro inflammatory response. (A) Schematic of the experimental design for the in vivo pIC inflammatory challenge (n = 4-6/group). (B) BM cellularity and absolute number of BM myeloid cell, 3 days after pIC treatment. (C) Absolute number of BM Lin⁻Sca-1⁺c-Kit⁺ (LSK) and Lin⁻Sca-1⁻c-Kit⁺ (LK) populations, 3 days after pIC treatment. (E) BMDM activated phenotype, 24 hours after LPS/IFN γ treatment. Left panel shows a representative FACS plots showing acquisition of the CD86 activation marker. Right panel show qRT-PCR analyses for *ll6* gene expression. Results are expressed as fold change relative to PBS-treated BMDMs, set at 1 (n = 3-4). (F) Absolute number of BMDM in culture 3 hours after with PBS or LPS/IFN γ (n = 3). Graphs indicate mean ± SD. One-way ANOVA with Tukey's post hoc test (B-D), two-way ANOVA with Sidak's post hoc test (E and F): *, P ≤ 0.05, **, P ≤ 0.01.

Supplemental Figure 5. Impact of maternal/fetal AGER and NLRP3 on the induction of GD hematopoietic memory. (A) Non-fasting glycemia in WT and $Ager^{-/-}$ pregnant dams following Vehicle or STZ treatment (n = 4-12/group). (B) Hematopoietic readout for offspring born to normal or diabetic pregnancy: absolute number of BM GMP cells (left graphs) and absolute number of BMDMs in culture 24 hours after treatment with PBS or LPS/IFN γ (right graphs) for $Ager^{+/-}$ offspring born to $Ager^{-/-}$ dams (upper panels) and $Ager^{-/-}$ offspring born to $Ager^{+/-}$ dams (lower panels) (n = 3-12/group). (C) Table summarizing the impact of maternal and fetal Ager knockout on the induction of the GD hematopoietic memory. (D) Non-fasting glycemia in WT and $Nlrp3^{-/-}$ pregnant dams following Vehicle or STZ treatment (n = 4-8/group). (E) Hematopoietic readout for offspring born to normal or diabetic pregnancy: absolute number of BM GMP cells (left graphs) and absolute number of BM DMs in culture 24 hours after treatment with PBS or LPS/IFN γ (right graphs) for diabetic pregnancy: absolute number of BM GMP cells (left graphs) and absolute number of BM DMs in culture 24 hours after treatment with PBS or LPS/IFN γ (right graphs) for $Nlrp3^{+/-}$ offspring born to $Nlrp3^{-/-}$

dams (upper panels) and *Nlrp3^{-/-}* offspring born to *Nlrp3^{+/-}* dams (lower panels) (n = 5-14/group). (F) Table summarizing the impact of maternal and fetal *Nlrp3* knockout on the induction of the GD hematopoietic memory. (G) RT-PCR analysis showing the expression of the *ll1b*, *Tnf* and *Tgfb1* inflammatory cytokine genes. Results are expressed as fold change relative to controls, set at 1 (n = 3). (H) examples of gene signatures differentially enriched in placental CD45⁺ cells isolated from WT^{STZ} dams (compared to Ctrl and Nlrp3^{STZ} cells). Graphs indicate mean \pm SD. One-way ANOVA with Tukey's post hoc test (G), two-way ANOVA with Tukey's post hoc test (A and D) or with Sidak's post hoc test (B and E, right graphs) and unpaired two-tailed Student's t-tests (B and E, left graphs): *, P \leq 0.05, **, P \leq 0.01, ***, P \leq 0.0005, ****, P \leq 0.0001.

Supplemental Figure 6. Epigenetic alterations in LSK cells isolated from Ctrl and WT^{Akita} offspring. (A) DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) in LSK cells isolated from Ctrl and WT^{Akita} offspring (n = 2). Right panel shows principal component analysis (PCA) visualization of the first two principal components of all differentially methylated genes. Left panel shows gene signatures differentially enriched in Ctrl and WT^{Akita} offspring. (B) Heatmap of read counts of differentially accessible chromatin regions with log2FC> |0.58| and P-value < 0.05 between Ctrl vs WT^{Akita} offspring (n = 3-4/group). (C) Density map for differentially accessible chromatin regions with log2FC> |0.58| and P-value < 0.05 between Ctrl vs WT^{Akita} offspring showing ±1kb around the ATAC-seq peak center. (D) Volcano plot of differentially accessible chromatin regions for Ctrl vs WT^{Akita} LSK cells. GSEA analysis and examples GSEA plot shows the negative enrichment of Oxidative Phosphorylation and Interferon alpha response pathways in WT^{Akita} LSK cells. (E) Representative FACS plots showing BM HSPC compartments in WT^{STZ} offspring treated with vehicle or 5-azadC, immediately after 4 weeks of treatment or 2 weeks of recovery (representative of 3).

Table S2. List of key resources

REAGENT or RESOURCE	Source	# Catalog	
Chemicals, peptides, and recombinant proteins			
Recombinant mouse M-CSF	BioLegend	576402	
Recombinant mouse IFNγ	BioLegend	752802	
Lipopolysaccharide	Millipore Sigma	L2630	
Polyinosinic-polycytidylic acid sodium salt	Millipore Sigma	P1530	
D-glucose	ThermoFisher Scientific	A2494001	
Streptozocin (STZ)	Millipore Sigma	S0130	
5-aza-2'-deoxycytidine	Selleckchem	S1200	
Gold Antifade mounting media /DAPI	ThermoFisher Scientific	536939	
Cytofix/Cytoperm	BD biosciences	554655	
donkey serum	Millipore Sigma	D9663	
Foxo3 Antiboby	Millipore Sigma	07-1719	
goat anti-rabbit Antiboby	ThermoFisher Scientific	A11011	
Hoechst 33342	ThermoFisher Scientific	62249	
DMEM media	ThermoFisher Scientific	10-016-CV	
Fetal bovine Serum (FBS)	R&D Systems	S11550	
penicillin/streptomycin	ThermoFisher Scientific	15140122	
0.05% Trypsin-EDTA	ThermoFisher Scientific	25300-054	
1X RIPA Lysis buffer	Cell Signaling Technologies	9806	
protease inhibitor cocktail	Roche	04693159001	
phosphatase inhibitor cocktail	Roche	046906837001	
4× Laemmli sample buffer	Bio-Rad	1610747	
DNMT1 Antiboby	Cell Signaling Technologies	5032	
DNMT3A Antiboby	R&D System	MAB63151	
β-ACTIN Antiboby	Millipore Sigma	A5441	
anti–mouse IgG, HRP-linked Antibody	Cell Signaling Technologies	7076	
anti-rabbit IgG, HRP-linked Antibody	Cell Signaling Technologies	7074	
SuperScript™ III First-Strand Synthesis System	ThermoFisher Scientific	18080051	
SYBR™ Select Master Mix	ThermoFisher Scientific	4472908	
Control diet (13 Kcal% fat)	Lab Diets	5010	
High fat diet (HFD) (60 Kcal% fat)	Research Diet	D12492	
Oligonucleotides			
<i>II1b</i> -Fw: tggcaactgttcctgaactca	IDT	N/A	
II1b-Rev: gggtccgtcaacttcaaagaac	IDT	N/A	
Tnf-Fw: caaatggcctccctctcatca	IDT	N/A	
Tnf-Rev: tgggctacaggcttgtcac	IDT	N/A	

II6-Fw: ccagaaaccgctatgaagttcc	IDT	N/A
//6-Rev: gttgtcaccagcatcagtcc	IDT	N/A
Cc/2-Fw: agcagcaggtgtcccaaa	IDT	N/A
Cc/2-Rev: ttcttggggtcagcacagac	IDT	N/A
Tgfb1-Fw: gctgcgcttgcagagattaa	IDT	N/A
Tgfb1-Rev: gtaacgccaggaattgttgcta	IDT	N/A
Actb-Fw: ccctaaggccaaccgtgaaa	IDT	N/A
Actb-Rev: cagcctggatggctacgtac	IDT	N/A
Software and algorithms		
Prism 9	GraphPad	N/A
FlowJo	BD biosciences	N/A
Imaris and NIS 566 elements software	Oxford Instrument	N/A
Photoshop CC	Adobe	N/A
BioRender.com		N/A
Experimental models: organisms/strains		
C57BL/6J	The Jackson Laboratory	000664
B6.SJL-Ptprca Pepcb/BoyJ	The Jackson Laboratory	002014
Ins2 ^{Akita/J}	The Jackson Laboratory	003548
Apoe ^{_/_}	The Jackson Laboratory	002052
Ager-/-	The Jackson Laboratory	03277
NIrp3 ^{-/−}	The Jackson Laboratory 02130	
Other		
Polysine microscope slides	ThermoFisher Scientific	P4981-001
7900 HT Fast Real-Time PCR System	Applied Biosystems	N/A

Other names Clone Fluorochrome # Catalog Name Source Ter119 Ly-76 **TER119** Purified rat BioLegend 116202 Mac1 CD11b M1/70 Purified rat BioLegend 101202 Gr1 Ly-6C **RB6-8C5** Purified rat BioLegend 108402 B220 CD45R RA-3-6B2 Purified rat BioLegend 103202 CD5 53-7.3 Purified rat BioLegend 100602 CD3 17A2 Purified rat BioLegend 100202 CD4 GK1.5 Purified rat BioLegend 100402 CD8 53-6.7 Purified rat 100702 BioLegend **BD** biosciences Ter119 **TER119** Biotin 51-09082J Ly76 **BD** biosciences CD11b M1/70 Biotin 51-01712J Mac1 Gr1 Biotin **BD** biosciences 51-01212J Ly-6C **RB6-8C5 BD** biosciences B220 CD45R RA-3-6B2 Biotin 51-01122J **BD** biosciences CD3 CD3e 17A2 Biotin 51-01082J ThermoFisher Goat Anti-Rat PE-Cv5 A10691 F(ab')2-IgG Scientific ThermoFisher Goat Anti-Rat Efl660 50-4017-82 F(ab')2-lqG Scientific Streptavidin BV711 BioLegend 405241 Streptavidin PE-Cy7 BioLegend 405206 ThermoFisher Streptavidin efluor450 48-4317-82 Scientific ThermoFisher c-Kit CD117 2B8 APC-eFluor780 47-1171-82 Scientific D7 BioLegend Sca-1 Pacific Blue 108120 Ly-6a/e ThermoFisher Flt3 A2F10 13-1351-85 CD135 Biotin Scientific ΡE BioLegend Flt3 CD135 A2F10 135305 **CD48** HM48-1 BV711 BioLegend 103439 CD48 HM48-1 PerCP-Cy5.5 103422 BioLegend **CD48** HM48-1 Alexa-Fluor647 BioLegend 103416 TC15-PE CD150 Slamf1 BioLegend 115904 12F12.2 TC15-CD150 Slamf1 BV650 BioLegend 115931 12F12.2 ThermoFisher CD34 Mucosialin RAM34 FITC 11-0341-85 Scientific CD16/32 93 BV510 BioLegend 101333 FcγR PerCP-CD16/32 93 BioLegend 46-0161-82 FcγR eFluor710 ThermoFisher Ter119 15-5921-82 Ter119 PE-Cy5 Scientific ITGAM, CR3, ThermoFisher Mac1 M1/70 PE-Cy7 25-0112-81 CD11b Scientific Gr1 Ly6G/Ly6C RB6-8C5 BV421 BioLegend 108433 1452C11 APC BioLegend 100236 CD3_E ThermoFisher APC-eFluor780 B220 CD45R RA3-6B2 47-0452-82 Scientific Ly6G 1A8 Pacific Blue BioLegend 127611

HK1.4

ΡE

BioLegend

128007

Ly6C

Table S3. List of Antibodies/reagents used for flow cytometry analysis

CD45.1	A20	Alexa-Fluor700	BioLegend	110724
CD45.1	A20	BUV395	BD biosciences	565212
CD45.2	104	FITC	BioLegend	109806
CD45.2	104	BUV797	BD biosciences	612778
Ki67	16-A8	PE	BioLegend	652403
LIVE/DEAD		Zombie NIR	BioLegend	423105
UltraComp ebeads			ThermoFisher Scientific	01-2222-42