High Stability of Discosoma DsRed As Compared to Aequorea EGFP

VV Verkhusha, IM Kuznetsova, OV Stepanenko… - Biochemistry, 2003 - ACS Publications
VV Verkhusha, IM Kuznetsova, OV Stepanenko, AG Zaraisky, MM Shavlovsky, KK Turoverov
Biochemistry, 2003ACS Publications
Comparative analysis of conformational stabilities was performed for two widely used
genetic reporters, EGFP and DsRed, proteins exhibiting similar β-can folds, but possessing
different oligomeric organization and chromophore structures. Two factors affecting protein
stability in vitro, such as elevated temperatures and a chaotropic agent guanidine
hydrochloride, were studied. In vivo tolerance of the fluorescence proteins to proteasomal-
based degradation was studied in insect and mammalian cells, and in Xenopus embryos …
Comparative analysis of conformational stabilities was performed for two widely used genetic reporters, EGFP and DsRed, proteins exhibiting similar β-can folds, but possessing different oligomeric organization and chromophore structures. Two factors affecting protein stability in vitro, such as elevated temperatures and a chaotropic agent guanidine hydrochloride, were studied. In vivo tolerance of the fluorescence proteins to proteasomal-based degradation was studied in insect and mammalian cells, and in Xenopus embryos. The apparent rate constants of thermal and GdmCl-induced denaturation were several orders of magnitude lower for DsRed than for EGFP. DsRed lifetimes severalfold longer than those of EGFP were observed in cultured cells and in embryos. The remarkable fluorescence stability of DsRed under the all conditions that have been studied is attributed to a significant extent to its tetrameric organization. Therefore, DsRed can be used as a genetic reporter and advanced population marker with a significantly extended intracellular lifespan.
ACS Publications