Review

Abstract

Sexually transmitted infections (STIs) have plagued humans for millennia and can result in chronic disease, pregnancy complications, infertility, and even death. Recent technological advances have led to a better understanding of the causative agents for these infections as well as aspects of their pathogenesis that might represent novel therapeutic targets. The articles in this Review Series provide excellent updates on the recent advances in understanding of the pathogenesis of some very important and persistent STIs and discuss the importance of considering each pathogen in the broader context of the environment of the individual who it infects.

Authors

Anne Rompalo

×

Abstract

Ischemic kidney injury often occurs in the context of multiple organ failure and sepsis. Here, we review the major components of this dynamic process, which involves hemodynamic alterations, inflammation, and endothelial and epithelial cell injury, followed by repair that can be adaptive and restore epithelial integrity or maladaptive, leading to chronic kidney disease. Better understanding of the cellular pathophysiological processes underlying kidney injury and repair will hopefully result in the design of more targeted therapies to prevent the injury, hasten repair, and minimize chronic progressive kidney disease.

Authors

Joseph V. Bonventre, Li Yang

×

Abstract

Nearly all stress stimuli (e.g., inflammatory cytokines, glucocorticoids, chemotherapeutics, etc.) induce sphingolipid synthesis, leading to the accumulation of ceramides and ceramide metabolites. While the role of these lipids in the regulation of cell growth and death has been studied extensively, recent studies suggest that a primary consequence of ceramide accumulation is an alteration in metabolism. In both cell-autonomous systems and complex organisms, ceramides modify intracellular signaling pathways to slow anabolism, ensuring that catabolism ensues. These ceramide actions have important implications for diseases associated with obesity, such as diabetes and cardiovascular disease.

Authors

Benjamin T. Bikman, Scott A. Summers

×

Abstract

Rapid and sophisticated improvements in molecular analysis have allowed us to sequence whole human genomes as well as cancer genomes, and the findings suggest that we may be approaching the ability to individualize the diagnosis and treatment of cancer. This paradigmatic shift in approach will require clinicians and researchers to overcome several challenges including the huge spectrum of tumor types within a given cancer, as well as the cell-to-cell variations observed within tumors. This review discusses how next-generation sequencing of breast cancer genomes already reveals insight into tumor heterogeneity and how it can contribute to future breast cancer classification and management.

Authors

Hege G. Russnes, Nicholas Navin, James Hicks, Anne-Lise Borresen-Dale

×

Abstract

Many tumors, including breast cancer, are maintained by a subpopulation of cells that display stem cell properties, mediate metastasis, and contribute to treatment resistance. These cancer stem cells (CSCs) are regulated by complex interactions with the components of the tumor microenvironment — including mesenchymal stem cells, adipocytes, tumor associated fibroblasts, endothelial cells, and immune cells — through networks of cytokines and growth factors. Since these components have a direct influence on CSC properties, they represent attractive targets for therapeutic development.

Authors

Hasan Korkaya, Suling Liu, Max S. Wicha

×

Abstract

Breast cancer, rather than constituting a monolithic entity, comprises heterogeneous tumors with different clinical characteristics, disease courses, and responses to specific treatments. Tumor-intrinsic features, including classical histological and immunopathological classifications as well as more recently described molecular subtypes, separate breast tumors into multiple groups. Tumor-extrinsic features, including microenvironmental configuration, also have prognostic significance and further expand the list of tumor-defining variables. A better understanding of the features underlying heterogeneity, as well as of the mechanisms and consequences of their interactions, is essential to improve targeting of existing therapies and to develop novel agents addressing specific combinations of features.

Authors

Nicholas R. Bertos, Morag Park

×

Abstract

In recent years the description of well-defined molecular subtypes of breast cancer, together with the identification of the driving genetic alterations and signaling pathways, has led to the clinical development of a number of successful molecular targeted agents. This is best exemplified in the subset of HER2-amplified breast cancers, in which an increasing number of active agents are changing the natural history of this aggressive disease. Other targets are under exploration, and the clinical development of these agents will require a change from the current large, randomized trials in unselected patient populations to smaller trials in groups with a molecularly defined tumor type. In addition, combinatorial approaches that act on the secondary mutations and/or compensatory pathways in resistant tumors may markedly improve on the effects of targeted agents used alone.

Authors

Michaela J. Higgins, José Baselga

×

Abstract

Breast cancer is a heterogeneous disease. There is a high degree of diversity between and within tumors as well as among cancer-bearing individuals, and all of these factors together determine the risk of disease progression and therapeutic resistance. Advances in technologies such as whole-genome sequencing and functional viability screens now allow us to analyze tumors at unprecedented depths. However, translating this increasing knowledge into clinical practice remains a challenge in part due to tumor evolution driven by the diversity of cancer cell populations and their microenvironment. The articles in this Review series discuss recent advances in our understanding of breast tumor heterogeneity, therapies tailored based on this knowledge, and future ways of assessing and treating heterogeneous tumors.

Authors

Kornelia Polyak

×

Abstract

Chronic kidney disease (CKD) results from a wide array of processes that impair the kidney’s ability to perform its major functions. As many as 20 million Americans suffer from CKD and nearly a half million from end-stage renal disease, but there are also examples of centenarians with adequate renal function. Family-based and genome-wide studies suggest that genetic differences substantially influence an individual’s lifetime risk for kidney disease. One emerging theme is that evolution of genes related to host defense against pathogens may limit kidney longevity. The identification of these genetic factors will be critical for expanding our understanding of renal development and function as well as for the design of novel therapeutics for kidney disease.

Authors

David J. Friedman, Martin R. Pollak

×

Abstract

The successful treatment of certain autoimmune conditions with the humanized anti–IL-6 receptor (IL-6R) antibody tocilizumab has emphasized the clinical importance of cytokines that signal through the β-receptor subunit glycoprotein 130 (gp130). In this Review, we explore how gp130 signaling controls disease progression and examine why IL-6 has a special role among these cytokines as an inflammatory regulator. Attention will be given to the role of the soluble IL-6R, and we will provide a perspective into the clinical blockade of IL-6 activity in autoimmunity, inflammation, and cancer.

Authors

Simon A. Jones, Jürgen Scheller, Stefan Rose-John

×

No posts were found with this tag.