Review

Abstract

Substantial preclinical and clinical research into chronic graft-versus-host disease (cGVHD) has come to fruition in the last five years, generating a clear understanding of a complex cytokine-driven cellular network. cGVHD is mediated by naive T cells differentiating within IL-17–secreting T cell and follicular Th cell paradigms to generate IL-21 and IL-17A, which drive pathogenic germinal center (GC) B cell reactions and monocyte-macrophage differentiation, respectively. cGVHD pathogenesis includes thymic damage, impaired antigen presentation, and a failure in IL-2–dependent Treg homeostasis. Pathogenic GC B cell and macrophage reactions culminate in antibody formation and TGF-β secretion, respectively, leading to fibrosis. This new understanding permits the design of rational cytokine and intracellular signaling pathway–targeted therapeutics, reviewed herein.

Authors

Kelli P.A. MacDonald, Bruce R. Blazar, Geoffrey R. Hill

×

Abstract

Modern immunosuppression regimens effectively control acute rejection and decrease graft loss in the first year after transplantation; however, these regimens do not have a durable effect on long-term graft survival owing to a combination of drug toxicities and the emergence of chronic alloimmune responses. Eliminating drugs and their toxicities while maintaining graft acceptance has been the primary aim of cellular therapies. Tregs suppress both autoimmune and alloimmune responses and are particularly effective in protecting allografts in experimental transplant models. Further, Treg-based therapies are selective, do not require harsh conditioning, and do not have a risk of graft-versus-host disease. Trial designs should consider the distinct immunological features of each transplanted organ, Treg preparations, dose, and frequency, and the ability to detect and quantify Treg effects in a given transplant environment. In this Review, we detail the ongoing clinical trials of Treg therapy in liver and kidney transplantation. Integration of Treg biology gleaned from preclinical models and experiences in human organ transplantation should allow for optimization of trial design that will determine the potential efficacy of a given therapy and provide guidelines for further therapeutic development.

Authors

Qizhi Tang, Flavio Vincenti

×

Abstract

Alloimmune T cells are central mediators of rejection and graft-versus-host disease in both solid organ and hematopoietic stem cell transplantation. Unique among immune responses in terms of its strength and diversity, the T cell alloresponse reflects extensive genetic polymorphisms between allogeneic donors and recipients, most prominently within the major histocompatibility complex (MHC), which encodes human leukocyte antigens (HLAs) in humans. The repertoire of alloreactive T cell clones is distinct for every donor-recipient pair and includes potentially thousands of unique HLA/peptide specificities. The extraordinary magnitude of the primary alloresponse and diversity of the T cell population mediating it have presented technical challenges to its study in humans. High-throughput T cell receptor sequencing approaches have opened up new possibilities for tackling many fundamental questions about this important immunologic phenomenon.

Authors

Susan DeWolf, Megan Sykes

×

Abstract

Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections following allogeneic hematopoietic stem cell transplantation (HSCT) are a major cause of morbidity and mortality. Early clinical trials demonstrate that adoptive transfer of donor-derived virus-specific T cells to restore virus-specific immunity is an effective strategy to control CMV and EBV infection after HSCT, conferring protection in 70%–90% of patients. The field has evolved rapidly to develop solutions to some of the manufacturing challenges identified in early clinical studies, such as prolonged in vitro culture, optimization of the purity of the virus-specific T cell product, the potential limitations of targeting a single viral antigen, and how to manage the patient with a virus-naive donor. This Review both discusses the seminal early studies and explores cutting-edge novel technologies that broaden the feasibility of and the scope for delivering virus-specific T cells to patients after HSCT.

Authors

Claire Roddie, Karl S. Peggs

×

Abstract

Solid organ transplantation is a curative therapy for hundreds of thousands of patients with end-stage organ failure. However, long-term outcomes have not improved, and nearly half of transplant recipients will lose their allografts by 10 years after transplant. One of the major challenges facing clinical transplantation is antibody-mediated rejection (AMR) caused by anti-donor HLA antibodies. AMR is highly associated with graft loss, but unfortunately there are few efficacious therapies to prevent and reverse AMR. This Review describes the clinical and histological manifestations of AMR, and discusses the immunopathological mechanisms contributing to antibody-mediated allograft injury as well as current and emerging therapies.

Authors

Nicole M. Valenzuela, Elaine F. Reed

×

Abstract

Lower gastrointestinal (GI) tract graft-versus-host disease (GVHD) is the predominant cause of morbidity and mortality from GVHD after allogeneic stem cell transplantation. Recent data indicate that lower GI tract GVHD is a complicated process mediated by donor/host antigenic disparities. This process is exacerbated by significant changes to the microbiome, and innate and adaptive immune responses that are critical to the induction of disease, persistence of inflammation, and a lack of response to therapy. Here, we discuss new insights into the biology of lower GI tract GVHD and focus on intrinsic pathways and regulatory mechanisms crucial to normal intestinal function. We then describe multiple instances in which these homeostatic mechanisms are altered by donor T cells or conditioning therapy, resulting in exacerbation of GVHD. We also discuss data suggesting that some of these mechanisms produce biomarkers that could be informative as to the severity of GVHD and its response to therapy. Finally, novel therapies that might restore homeostasis in the GI tract during GVHD are highlighted.

Authors

James L.M. Ferrara, Christopher M. Smith, Julia Sheets, Pavan Reddy, Jonathan S. Serody

×

Abstract

There are many causes of inflammatory osteolysis, but regardless of etiology and cellular contexts, the osteoclast is the bone-degrading cell. Thus, the impact of inflammatory cytokines on osteoclast formation and function was among the most important discoveries advancing the treatment of focal osteolysis, leading to development of therapeutic agents that either directly block the bone-resorptive cell or do so indirectly via cytokine arrest. Despite these advances, a substantial number of patients with inflammatory arthritis remain resistant to current therapies, and even effective anti-inflammatory drugs frequently do not repair damaged bone. Thus, insights into events such as those impacted by inflammasomes, which signal through cytokine-dependent and -independent mechanisms, are needed to optimize treatment of inflammatory osteolysis.

Authors

Gabriel Mbalaviele, Deborah V. Novack, Georg Schett, Steven L. Teitelbaum

×

Abstract

Inflammasomes are high-molecular-weight cytosolic complexes that mediate the activation of caspases. There are many inflammasomes, and each is influenced by a unique pattern-recognition receptor response. Two signals are typically involved in the inflammasome pathways. Signal one involves recognition of pathogen-associated molecular patterns (PAMPs), such as LPS or other colonizing/invading microbes, that interact with TLRs, which induce the downstream production of pro–IL-1β. This is followed by signal two, which involves recognition of PAMPs or damage-associated molecular patterns (DAMPs), such as uric acid or ATP, via NLRP3, which leads to caspase-1–dependent cleavage of pro–IL-1β to active IL-1β and pyroptosis. Ultimately, these two signals cause the release of multiple proinflammatory cytokines. Both PAMPs and DAMPs can be liberated by early insults to the allograft, including ischemia/reperfusion injury, infections, and rejection. The consequence of inflammasome activation and IL-1 expression is the upregulation of adhesion molecules and chemokines, which leads to allograft neutrophil sequestration, mononuclear phagocyte recruitment, and T cell activation, all of which are key steps in the continuum from allograft insult to chronic allograft dysfunction.

Authors

S. Samuel Weigt, Vyacheslav Palchevskiy, John A. Belperio

×

Abstract

Endogenous danger signals, or damage-associated molecular patterns (DAMPs), are generated in response to cell stress and activate innate immunity to provide a pivotal mechanism by which an organism can respond to damaged self. Accumulating experimental and clinical data have established the importance of DAMPs, which signal through innate pattern recognition receptors (PRRs) or DAMP-specific receptors, in regulating the alloresponse to solid organ transplantation (SOT). Moreover, DAMPs may incite distinct downstream cellular responses that could specifically contribute to the development of allograft fibrosis and chronic graft dysfunction. A growing understanding of the role of DAMPs in directing the immune response to transplantation has suggested novel avenues for the treatment or prevention of allograft rejection that complement contemporary immunosuppression and could lead to improved outcomes for solid organ recipients.

Authors

Jamie L. Todd, Scott M. Palmer

×

Abstract

An increasing number of older people receive organ transplants for various end-stage conditions. Although organ transplantation is an effective therapy for older patients (i.e., older than 65 years of age), such as in end-stage renal disease, this therapy has not been optimized for older patients because of our lack of understanding of the effect of aging and the immune response to organ transplantation. Here, we provide an overview of the impact of aging on both the allograft and the recipient and its effect on the immune response to organ transplantation. We describe what has been determined to date, discuss existing gaps in our knowledge, and make suggestions on necessary future studies to optimize organ transplantation for older people.

Authors

Monica M. Colvin, Candice A. Smith, Stefan G. Tullius, Daniel R. Goldstein

×

No posts were found with this tag.