Review

Abstract

Chronic kidney disease (CKD) results from a wide array of processes that impair the kidney’s ability to perform its major functions. As many as 20 million Americans suffer from CKD and nearly a half million from end-stage renal disease, but there are also examples of centenarians with adequate renal function. Family-based and genome-wide studies suggest that genetic differences substantially influence an individual’s lifetime risk for kidney disease. One emerging theme is that evolution of genes related to host defense against pathogens may limit kidney longevity. The identification of these genetic factors will be critical for expanding our understanding of renal development and function as well as for the design of novel therapeutics for kidney disease.

Authors

David J. Friedman, Martin R. Pollak

×

Abstract

The successful treatment of certain autoimmune conditions with the humanized anti–IL-6 receptor (IL-6R) antibody tocilizumab has emphasized the clinical importance of cytokines that signal through the β-receptor subunit glycoprotein 130 (gp130). In this Review, we explore how gp130 signaling controls disease progression and examine why IL-6 has a special role among these cytokines as an inflammatory regulator. Attention will be given to the role of the soluble IL-6R, and we will provide a perspective into the clinical blockade of IL-6 activity in autoimmunity, inflammation, and cancer.

Authors

Simon A. Jones, Jürgen Scheller, Stefan Rose-John

×

Abstract

Atrial fibrillation (AF) is an extremely common cardiac rhythm disorder that causes substantial morbidity and contributes to mortality. The mechanisms underlying AF are complex, involving both increased spontaneous ectopic firing of atrial cells and impulse reentry through atrial tissue. Over the past ten years, there has been enormous progress in understanding the underlying molecular pathobiology. This article reviews the basic mechanisms and molecular processes causing AF. We discuss the ways in which cardiac disease states, extracardiac factors, and abnormal genetic control lead to the arrhythmia. We conclude with a discussion of the potential therapeutic implications that might arise from an improved mechanistic understanding.

Authors

Reza Wakili, Niels Voigt, Stefan Kääb, Dobromir Dobrev, Stanley Nattel

×

Abstract

Over the past decade and a half, the biomedical community has uncovered a previously unappreciated reciprocal relationship between cells of the immune and skeletal systems. Work in this field, which has been termed “osteoimmunology,” has resulted in the development of clinical therapeutics for seemingly disparate diseases linked by the common themes of inflammation and bone remodeling. Here, the important concepts and discoveries in osteoimmunology are discussed in the context of the diseases bridging these two organ systems, including arthritis, osteoporosis, cancer, and infection, and the targeted treatments used by clinicians to combat them.

Authors

Dallas Jones, Laurie H. Glimcher, Antonios O. Aliprantis

×

Abstract

All tissues and organs can be classified according to their ability to repair and regenerate during adult homeostasis and after injury. Some exhibit a high rate of constant cell turnover, while others, such as the lung, exhibit only low-level cell regeneration during normal adult homeostasis but have the ability to rapidly regenerate new cells after injury. Lung regeneration likely involves both activation of progenitor cells as well as cell replacement through proliferation of remaining undamaged cells. The pathways and factors that control this process and its role in disease are only now being explored. In this Review, we will discuss the connection between pathways required for lung development and how the lung responds to injury and disease, with a particular emphasis on recent studies describing the role for the epithelium in repair and regeneration.

Authors

Michael F. Beers, Edward E. Morrisey

×

Abstract

Insulin secretion is a highly dynamic process regulated by various factors including nutrients, hormones, and neuronal inputs. The dynamics of insulin secretion can be studied at different levels: the single β cell, pancreatic islet, whole pancreas, and the intact organism. Studies have begun to analyze cellular and molecular mechanisms underlying dynamics of insulin secretion. This review focuses on our current understanding of the dynamics of insulin secretion in vitro and in vivo and discusses their clinical relevance.

Authors

Susumu Seino, Tadao Shibasaki, Kohtaro Minami

×

Abstract

To fulfill its role as the major energy-storing tissue, adipose has several unique properties that cannot be seen in any other organ, including an almost unlimited capacity to expand in a non-transformed state. As such, the tissue requires potent mechanisms to remodel, acutely and chronically. Adipocytes can rapidly reach the diffusional limit of oxygen during growth; hypoxia is therefore an early determinant that limits healthy expansion. Proper expansion requires a highly coordinated response among many different cell types, including endothelial precursor cells, immune cells, and preadipocytes. There are therefore remarkable similarities between adipose expansion and growth of solid tumors, a phenomenon that presents both an opportunity and a challenge, since pharmacological interventions supporting healthy adipose tissue adaptation can also facilitate tumor growth.

Authors

Kai Sun, Christine M. Kusminski, Philipp E. Scherer

×

Abstract

Cloned in 1994, the ob gene encodes the protein hormone leptin, which is produced and secreted by white adipose tissue. Since its discovery, leptin has been found to have profound effects on behavior, metabolic rate, endocrine axes, and glucose fluxes. Leptin deficiency in mice and humans causes morbid obesity, diabetes, and various neuroendocrine anomalies, and replacement leads to decreased food intake, normalized glucose homeostasis, and increased energy expenditure. Here, we provide an update on the most current understanding of leptin-sensitive neural pathways in terms of both anatomical organization and physiological roles.

Authors

Laurent Gautron, Joel K. Elmquist

×

Abstract

The discovery of the genetic basis for circadian rhythms has expanded our knowledge of the temporal organization of behavior and physiology. The observations that the circadian gene network is present in most living organisms from eubacteria to humans, that most cells and tissues express autonomous clocks, and that disruption of clock genes results in metabolic dysregulation have revealed interactions between metabolism and circadian rhythms at neural, molecular, and cellular levels. A major challenge remains in understanding the interplay between brain and peripheral clocks and in determining how these interactions promote energy homeostasis across the sleep-wake cycle. In this Review, we evaluate how investigation of molecular timing may create new opportunities to understand and develop therapies for obesity and diabetes.

Authors

Wenyu Huang, Kathryn Moynihan Ramsey, Biliana Marcheva, Joseph Bass

×

Abstract

Obesity and its associated comorbidities represent one of the biggest public health challenges facing the world today. The heritability of body weight is high, and genetic variation plays a major role in determining the interindividual differences in susceptibility or resistance to the obesogenic environment. Here we discuss how genetic studies in humans have contributed to our understanding of the central pathways that govern energy homeostasis. We discuss how the arrival of technological advances such as next-generation sequencing will result in a major acceleration in the pace of gene discovery. The study of patients harboring these genetic variants has informed our understanding of the molecular and physiological pathways involved in energy homeostasis. We anticipate that future studies will provide the framework for the development of a more rational targeted approach to the prevention and treatment of genetically susceptible individuals.

Authors

Shwetha Ramachandrappa, I. Sadaf Farooqi

×

No posts were found with this tag.